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Complexity of river basin systems



Some typical questions: assessment from historical data

How much is the inflow to the 
reservoir and which reliability?



Data analysis of time series and modelling (Time Series Analysis)

Reference books: 
“Handbook of hydrology, edited by D.R. Maidment, in particular, Ch. 19 by J. Salas (on 
Moodle)
“Applied statistics for civil and environmental engineers”, Kottegoda & Rosso, 2007



Scopes of Time Series Analysis

To analyze the statistical properties of a given variable in order to characterize the system‘s
behaviour, to understand its dynamics, and to simulate or to predict it N steps ahead

Statistical 
properties

Mathematical 
modelling

Data generation for 
several purposes



Examples: TSA concerns any system

Snow 
depth

Sunspots number dynamics

Moose-wolfs in Yellowstone

Precip, Temp, Discharge Lake levels

Hormonal cycle



Aims of Time Series Analysis

Linear vs Nonlinear Analysis

Deterministic vs Stochastic

Noise Reduction

System dynamics reconstruction

Test for stationarity and transient dynamics

Intermittency

Structural stability

Modelling (prediction, syntethic data generation)
https://www.pks.mpg.de/tisean/ 

R or Octave package of nonlinear 
methods

https://www.pks.mpg.de/tisean/


Example: Synthetic data generation for Inveliver PP

STEPS:
1. historical data analysis
2. Partitioning in components
3. Stochastic model identification
4. Use of model for data generation

Source: Perona et al., Frontiers in Env Sci., 2021



Type of time series: definitions

a) Continuous or discontinous time series: sequence of a continous or a discrete observation

b) Single time series or univariate time series:e.g., one obsersed variable in time

c) Multiple time series or multivariate time series: e.g., more observed variables for the same basin are a (multivariate) 
set

d) Correlated and uncorrelated time series: indicate (linear) dependence of a data at time t on previous data at lag 𝜏

e) Intermittent time series: this sequence are intermittent when the recorded variable shows zero and non-zero values

f) Counting time series: e.g., the count of rainy days in a month or the number of days with snow on the ground

g) Regularly or irregularly spaced time series: a sequence where sampling interval is constant

h) Stationary and non-stationary time series: a sequence that is free of trends, shift or periodicity, etc.

Let see more in detail



Time series or time sequences: continous and discontinous

A quantity (or variable) of a given system
evolves (in time) according to the dynamics
underlying the system.  

i.e., the time series of the measured variable 
reflects the true system‘s behaviour and can be
either continous or discrete

Single Time series (or univariate): a time series
of a single variable at a time

Multiple Time series (or multivariate): the time 
series of more than one (same or different) 
variable
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y5 = jy(l)dl (dellned by Inlegralion) 

(b) 

FIGURE 19.1.1 (a) A continuous time series y(1). ( b )  A discrete lime 
series y, derived from the continuous series. 

weekly, monthly, bimonthly, quarterly, and annual time intervals. The term sea- 
sonal time series is med for series defined at time intervals which are fractions of a 
year (usually multiples of a month). Figure 19.1.16 plots a discrete time series in the 
form of a bar or stick diagram; however, because of convenience or preference, the 
series is oRen plotted in the form of a continuous line by successively connecting the 
tops of the sticks. A continuous plot of a discrete time series should not be confused 
with a continuous time series. 

Hydrologic time series may be classified into several categories depending on a 
number of factors. Each of these categories is defined below. 

Single Time Series. A single tirne series (or univariate series) is simply a time series 
of one hydrologic variable at a given site. Consider a basin with five precipitation 
gauges and a stream network system with three stream-flow gauging stations. The 
precipitation time series measured at each site is a single time series. Likewise, the 
series resulting from the areal average of the five precipitation series is also a single 
time series. Similarly, the flow time series at any given site of the stream network 
system is a single time series. 

Mulriple Time Series. Consider the basin and flow network referred to above. The 
set of five precipitation time series of the basin represents a multivariate time series. 
Likewise. the set of three flow time series represents a multivariate series. In general, a 
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set of two or more time series constitutes a multiple timeseriesor a mtrltivariate time 
series. Furthermore, multiple time series may be a set of time series of dimerent 
processes. For instance, the flow time series at sites 1,2, and 3 and the corresponding 
precipitation time series at gauges I through 5 constitute a m~~lt iple  time series. 
Additionally, a multiple time series may arise at a stream-flow gauging station when 
the station measures different variables such as discharge, flow depth, water tempera- 
ture, and sediment transport or at a given weather station when it measures variables 
such as precipitation, air temperature, evaporation, and humidity. 

(Incorrelated and Correlated Time Series. Figure 19.1.2 shows a single time series 
x,. If the x's at time t depend (linearly) on the x's at time t - k, fork = 1 ,  2, . . . , 
then the time series is called ar~rocorrelared, serially correlated, or correlated in tirne. 
Otherwise, it is uncorrelated. An uncorrelated series is also called an independent 
series. Autocorrelation or dependence in some hydrologic time series sucll as stream 
now usually arises from the effect of storage, such as surface. soil. and eroundwater 
storages, which causes the water to remain in the system th;ough subsequent time 
periods. For instance, basins with significant surface storage in the form of lakes, 
swamps, or glaciers produce stream-flow series showing significant autocorrelation. 
Likewise, subsurface storage, especially groundwater storage, produces significant 
autocorrelation in the stream-flow series derived from groundwater outflow. Con- 
versely, time series of monthly or annual precipitation nnd time series of annual 
maximum flows(flood peaks) are usually uncorrelated, although in cases that a time 
series is nonltornogeneous, significant serial correlation may occur.1J6 

Refer to the two seriesofFig. 19.1.2. Ifthe y's at time t depend (1inearly)on thex's 
at time t - k, for k = 0, I ,  . . . -then the two time series are cross-correlated. 
Several combinations of autocorrelation and cross-correlation exist. For instance, it 
is possible that both series y, and x, are uncorrelated in time, yet are cross-correlated 
with one another. Likewise, it is possible that each series can be autocorrelated, yet 

Aulocorrelalion 
4 C 

FIGURE 19.1.2 A pair orsingle lime series x, and y, each having 
autocorrelation. Cross-correlation is between the two series. 

Continuous 
time series

Discrete 
time series

Source: Salas, 1992



Time series or time sequences: correlated and uncorrelated
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FIGURE 19.1.1 (a) A continuous time series y(1). ( b )  A discrete lime 
series y, derived from the continuous series. 

weekly, monthly, bimonthly, quarterly, and annual time intervals. The term sea- 
sonal time series is med for series defined at time intervals which are fractions of a 
year (usually multiples of a month). Figure 19.1.16 plots a discrete time series in the 
form of a bar or stick diagram; however, because of convenience or preference, the 
series is oRen plotted in the form of a continuous line by successively connecting the 
tops of the sticks. A continuous plot of a discrete time series should not be confused 
with a continuous time series. 

Hydrologic time series may be classified into several categories depending on a 
number of factors. Each of these categories is defined below. 

Single Time Series. A single tirne series (or univariate series) is simply a time series 
of one hydrologic variable at a given site. Consider a basin with five precipitation 
gauges and a stream network system with three stream-flow gauging stations. The 
precipitation time series measured at each site is a single time series. Likewise, the 
series resulting from the areal average of the five precipitation series is also a single 
time series. Similarly, the flow time series at any given site of the stream network 
system is a single time series. 

Mulriple Time Series. Consider the basin and flow network referred to above. The 
set of five precipitation time series of the basin represents a multivariate time series. 
Likewise. the set of three flow time series represents a multivariate series. In general, a 
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set of two or more time series constitutes a multiple timeseriesor a mtrltivariate time 
series. Furthermore, multiple time series may be a set of time series of dimerent 
processes. For instance, the flow time series at sites 1,2, and 3 and the corresponding 
precipitation time series at gauges I through 5 constitute a m~~lt iple  time series. 
Additionally, a multiple time series may arise at a stream-flow gauging station when 
the station measures different variables such as discharge, flow depth, water tempera- 
ture, and sediment transport or at a given weather station when it measures variables 
such as precipitation, air temperature, evaporation, and humidity. 

(Incorrelated and Correlated Time Series. Figure 19.1.2 shows a single time series 
x,. If the x's at time t depend (linearly) on the x's at time t - k, fork = 1 ,  2, . . . , 
then the time series is called ar~rocorrelared, serially correlated, or correlated in tirne. 
Otherwise, it is uncorrelated. An uncorrelated series is also called an independent 
series. Autocorrelation or dependence in some hydrologic time series sucll as stream 
now usually arises from the effect of storage, such as surface. soil. and eroundwater 
storages, which causes the water to remain in the system th;ough subsequent time 
periods. For instance, basins with significant surface storage in the form of lakes, 
swamps, or glaciers produce stream-flow series showing significant autocorrelation. 
Likewise, subsurface storage, especially groundwater storage, produces significant 
autocorrelation in the stream-flow series derived from groundwater outflow. Con- 
versely, time series of monthly or annual precipitation nnd time series of annual 
maximum flows(flood peaks) are usually uncorrelated, although in cases that a time 
series is nonltornogeneous, significant serial correlation may occur.1J6 

Refer to the two seriesofFig. 19.1.2. Ifthe y's at time t depend (1inearly)on thex's 
at time t - k, for k = 0, I ,  . . . -then the two time series are cross-correlated. 
Several combinations of autocorrelation and cross-correlation exist. For instance, it 
is possible that both series y, and x, are uncorrelated in time, yet are cross-correlated 
with one another. Likewise, it is possible that each series can be autocorrelated, yet 

Aulocorrelalion 
4 C 

FIGURE 19.1.2 A pair orsingle lime series x, and y, each having 
autocorrelation. Cross-correlation is between the two series. 

Correlated and uncorrelated time series.  The data at time t 
depends on past data values. Correlation in a single time serie 
can be in time (autocorrelation) or in space with other time 
series (cross-correlation). We will see how to compute this 
mathematically 
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there is no cross-correlation between them. Just as there are physical reasons why 
some hydrologic time series are autocorrelated, there are also physical reasons why 
two o r  more series are: cross-correlated. Examples are precipitation series a t  two 
nearby sites and stream flow at two nearby gauging stations. In both cases, one would 
expect that the time series will be cross-correlated because the sites are relatively close 
to  each other and therefore subject to similar climatic and hydrologic events. As the 
sites considered become father apart, their cross-correlation decreases. Likewise, one 
would expect a significa~lt cross-correlation between stream-flow time series and the 
corresponding areal average precipitation time series over the same basin. One of the 
problems in hydrology is searching for significant correlation among time series. 

Intennittent Time Series. Hydrologic time series are infermiltent when the variable 
under consideration takes on nonzero and zero values throughout the length of 
record. For instance, the precipitation observed in a recording rain gauge is an  
intermittent continuous time series. Likewise, a discrete time series derived by inte- 
grating an intermittent co~itinuous precipitation time series can be intermittent 
when the time interval of integration is relatively small. Thus, hourly, daily, and 
weekly rainfall are typically intermittent time series, while monthly and annual 
rainfall are usually nonintermittent. However, in semiarid and arid regions, even 
monthly and annual precipitation may be intermittent as  well. Figure 19.1.3 showsa 
six-hourly rainfall series for a given gauging station and the corresponding stream 
flow series at  two gauging stations. The rainfall series is intermittent, displaying a 
sequence of nonzero and zero rainfalls, while the stream-flow series is nonintermit- 
tent, with nonzero flows throughout the record. Stream-now time series are often 
intermittent in semiarid and arid regions. 

FIGURE 19.1.3 (a) Six-hour rainfall R, mm, during the period Oct. 
I - Nov. 158, 1983, at site Te Harolo. Mohaka, Ncw b l a n d .  ( b )  Corre- 
sponding stream now Q, ml/s, on thc Mohaka River at Raupunga(A) and 
Glenfalls (B), New Zealand. (Provided by S. M. Thompson.) 
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Counting,Time Series. The  variable of interest may be the result of counting tile 
occurrence of certain hydrologic events. An example is the count of rainy days for 
each month throughout the period of record. The resulting sequence of integer 
numbers d , ,  d,, . . . , d,, is a co~rnting tittle series. 

Regularly and Irregularly Spaced Time Series. Most time series are defined on a 
reglrlarly spaced time interval; i.e., the value of the variable llas bcen deterlnincd 
every hour, every day, o r  every week, etc., throughout the record. This is the case for 
most variables which are of interest in hydrology. However, in some cases, data may 
be collected at irregular time intervals. This is commonly true of water-quality mea- 
surements. Nearly all methods of time-series analysis require regularly spaced data, 
but some methods, such as the use ofregression for trend analysis, can also be applied 
to  irregularly spaced data. In this chapter it is assumed that the time series under 
consideration has been defined on a regular time scale. 

Stationary and ~Vonstationary Time Series. A llydrologic time series is slatior~nr~~ if 
it is free of trends, shifts, or periodicity (cyclicity). Tllis implies that the statistical 
parameters of  the series, such as the mean and variance, remain constant through 
time. Otherwise, the time series is nonstatiot~ary. Generally, hydrologic time series 
defined on an annual time scale are stationary, although this assumption may be 
incorrect as a result of large-scale climatic variability, natural disruptions like a 
volcanic eruption, and human-induced changes such as the effect of reservoir con- 
struction on downstream Ilow. Hydrologic time series defined at  time scales smaller 
than a year, suchas monthly series, are typically nonstationary, mainly becauseoftl~e 
annual cycle. 

19.1.2 Parti t ioning of t h e  Time-Ser ies  S t r u c t u r e  

IIydrologic time series exhibit, in various degrees, trends, shifts or jumps, seasonal- 
ity, autocorrelation, and nonnormality. These attributes of hydrologic time series are 
referred to as  componerjfs. A time series can be parfilioned or  decomposed into its 
component series. 

Trends and Shifis. In general, natural and human-induced factors may produce 
gradual and instantaneous trends and shifts (jumps) in hydrologic series. For exam- 
ple, a large forest fire in a river basin can immediately affect the runoff, producing a 
shift in the runoffseries, whereas a gradual killing oFa forest (for instance by an insect 
infestation that takes years for its population to  build up) can result in gradual 
changes or trends in the runoff series (see Chap. 13 for further details). A large 
volcanic explosion such as the 1980 Mount St. Helens explosion, or a large landslide, 
can produce sudden changes in the sediment transport series of a stream. Trends in 
non-point-source water-quality series may be the result of long-term changes in 
agricultural practices and agricultural land development. Likewise, shins in certain 
water-quality constituents may be caused by agricultural activities such as  sudden 
changes in the use of certain types of pesticides. An important source of trends and 
shins in stream-flow series arises from changes in land use and the development of 
reservoirs and diversion structures. The  current concern about global warming and 
climatic changes is making hydrologists more aware of the occurrence of trends and 
shifts in hydrologic time series. Figure 19.1.4 shows the monthly series ofwater levels 
of Lake Victoria at Entebbe (Uganda), which has a significant upward shin. 

Intermittent vs continuous time series.  A time sequence is 
intermittent when it can take both zero and non-zero values 
(e.g., precipitation intensity or streamflows in arid regions, 
which are said ephemeral streams). Intermittency may 
depend on sampling frequency and aggregation

Source: Salas, 1992



Time series or time sequences: definitions

Continuos time and space variables, e.g. Water levels 
and discharge

Discrete times, continuous space variable, e.g. 
annual peaks of discharge

Stationary vs non-stationary time series, e.g. 
trends, shifts, etc.
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Year 

FIGURE 19.1.4 Timeseriesofrnonthly IevelsofLake Victoria at Entebbe. Uganda, 
for the period 1949- 1975 showing an upward shiR.15' 

Removing Trends. A hydrologic time series may exhibit shins in one or more of its 
statistical characteristics. The most common ones are trends in the mean and in the 
variance.The partitioning ofa  time series with a simple trend is schematically shown 
in Fig. 19.1.5. A linear trend in the mean isshown in Fig. 19.1.5a. The trend y, can be 
removed by the difference y, - Y, as shown in Fig. 19.1.56. The variance of such 
difference series, expressed by s:, may be either a function of time (in which case 
there is a trend in the variance) or may be a constant, as shown graphically in Fig. 
19.1.5~. The trend in the variance can be removed by (y, - y,)/s, (the process of 

Romovlng trends Removing shllls 

(d) (d') 

FIGURE 19.1.5 Partitioning an annual time series with trends and partitioning a n  an11t1.11 
series wilh shins. 
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constructing a new series by subtracting the mean and dividing by the standard 
deviation is called standardization). The residual series in Fig. 19.1.5d may still have 
other properties such as correlation structure which can be decomposed or removed. 

Removing ShiJs. A hydrologic series may also exhibit shifts in one a r  more of its 
statistical characteristics. Positive (upward) or negative (downward) shifts in the 
mean and variance are most commonly analyzed. Figure 19.1 .5a1 to d' gives exam- 
ples of removing sudden downward shins from an annual series. In Fig. 19.1.5at, 
shifts in the mean and variance occur at time T + I .  The shin in the mean is removed 
by y, - j, as shown in Fig. 19.1.5b', and the shift in the variance is removed by 
(y, - ji,)/s,. The residual series plotted in Fig. 19.1.5d' now shows a series with mean 
zero and variance one and may further exhibit other properties such as autocorrela- 
tion. 

Seasonality. Hydrologic series defined at time intervals smaller than a year(such as 
monthly series) generally exhibit distinct seasonal(orperiodic) patterns. These result 
from the annual revolution of the earth around the sun which produces the annual 
cycle in most hydrologic processes. Some series of interest to hydrology, sucl~ as daily 
series of urban water use or daily series of hydropower generation, may also exhibit a 
weeklypattern due to variations of demands within a week. Likewise, hourly time 
series may have a distinct ditrmalpattern due to the variations ofdemands within a 
day. Summer hourly rainfall series or certain water-quality constituents related to 
temperature may also exhibit distinct diurnal patterns due to the daily rotation oftlie 
earth which causes variations within the day of net radiation. 

Seasonal or periodic patterns of hydrologic series translate into statistical cl~arac- 
teristics which vary within the year (or within a week or a day as the case may be). 
Generally seasonal or periodic variations in the mean, variance, covariance, and 
skewness are important. Figure 19.1.6 shows how seasonal series are partitioned into 
basic components (the annual series is also shown for comparison). A part of the 
original time series y, is plotted in Fig. 19.1.6at, in which the seasonal (periodic) 
pattern is evident. It is a periodic-stochastic series since, in addition to the periodic 
pattern, a random pattern is also observed: This periodic-stochastic pattern repeats 
through time in a similar fashion. In contrast, the annual series in Fig. 19.1.60 does 
not show a periodic pattern; it simply varies about a constant mean y (see Fig. 
19.1.66). The ract that the series in Fig. 19.1.6a' behaves in a cyclic fashion implies 
that the mean of the series is also cyclic or periodic, as shown in Fig. 19.1.66'. For 
instance, for monthly stream-flow series, each month will have its own mean y, (refer 
to Sec. 19.2 for the definition of seasonal statistics). 

Removing Seasonality in the Mean and Variance. Removing the seasonality in the 
mean is accomplished by taking the difference y, - F,, where y, is the monthly mean 
for January, February, . . . , if l is a monthly index. When this difference is plotted 
in Fig. 19.1.6L, the series fluctuates about zero with a particular pattern. The varia- 
bility of the series is initially small, then increases, and then decreases. This pattern 
repeats in the second year and subsequent years throughout the record. If such 
variability is measured by tlie variance s: in each time interval in the year (for 
instance, one variance for each month in the year for a monthly series) and s, is 
plotted as in Fig. 19.1 Ad', it will exhibit a seasonal (periodic) pattern similar to that 
of the mean in Fig. 19.1.66'. In contrast, for the annual series y, - in Fig. 19.1.6c, 
the variance s2  is a constant. The seasonality in the variance can be removed by 
(y, - y,)/s,. This operation is also called seasonal standardization and onen is re- 
ferred to in literature as deseasonalizingthe original series. Actually, this latter tenn 

Discrete times, discrete space variables. Eg., the 
counting of rainy days



Examples of trends and shifts

Trends

Eight years moving average of temperature 
in Wrocław for 1966–2017, with three linear 
trends for three homogeneous period

Maggia river case for the pre- and the post damming period

SOURCE: Molnar et al., Peckiana 2008

SOURCE: Glogokswi et al., 2020

Climatic origin (Greenhouse gases) Anthropogenic origin (catchment impoundment by dam construction)



Determinism vs stochasticity
The ensemble of trajectories or realizations of the system
evolution represents a process, which can be modeled as

Deterministic process (Poincaré, Hamilton, Laplace, etc.): data
are modeled using a set of mathematical equations corresponding
to a quantifiable number of variables (degrees of freedom). 
Dynamical Systems theory

Stochastic process (Langevin, Einstein, Kolmogorov, etc.):  data
are modeled using mathematical equations affected by „noise“, 
which intrinsecally increase to infinity the number of variables 
explaining the system behaviour. Theory of Stochastic Processes

Henri 
Poincaré

1854-1912

Isaac 
Newton

1642-1727

Andrej 
Kolmogorov
1903-1987

Thomas 
Bayes

1701-1761



Examples of deterministic dynamics
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Underlying system: e.g., mech. 
oscillator
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Continuous (Flow)

)(tfkxxcxm =++ !!!

Discrete (Map)

Underlying system: e.g., population
dynamics and the logistic map

Measured data

1 (1 )n n nx ax x+ = -

a = Reduced carrying capacity



Example of stochastic dynamics

PDF, but NO correlation in time for the 
state variable N (White noise)

N

time

Marked Poisson events, e.g
Cox and Miller (1969) 

Compound Poisson Process
Cox and Miller (1969), Iturbe et al. 
(1999), Ridolfi et al. (2006), Botter et 
al. (2007)

Noise term 
as “Jumps”

STOCHASTIC PROCESS: PDF, correlation in 
time for the state variable N (Colored noise)

time

h

We will return to the use of this simple model



Unpredictable behaviour can occur in nonlinear systems

Continuous (Flow)
3( ) ( )mx cx k x ax f t+ + + =!! !
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-10

-7.5

-5

-2.5

2.5

5

7.5

10

Error in the i.c. propagates
(spreading of trajectories)

Discrete (Logistic map)

1 (1 )n n nx ax x+ = -

Too much carrying capacity
makes the system „crazy“!

Try with a={0.5; 2.5; 3.1; 3.5; 
3.7; 4.2} and x0=0.5

Determinist 
nonlinear 
systems with 
unpredictable 
dynamics are 
named 
Chaotic 
systems



Is there determinism in hydrology and climatology?

After Perona and Burlando, AWR 2008 It depends at which scale and components one looks at


